Jumat, 15 Januari 2010

Masa Depan Energi Panas Bumi.

Pergerakan lapisan bumi yang saling bertumbukan menyebabkan terjadinya proses radioaktif di kedalaman lapisan bumi sehingga menyebabkan terbentuknya magma dengan temperatur lebih dari 2000 °C. Setiap tahun air hujan serta lelehan salju meresap ke dalam lapisan bumi, dan tertampung di suatu lapisan batuan yang telah terkena arus panas dan magma. Lapisan batuan itu disebut dengan geothermal reservoir yang mempunyai kisaran temperatur antara 200° - 300 °C. Siklus air yang setiap tahun berlangsung menyebabkan lapisan batuan reservoir sebagai tempat penghasil energi panas bumi yang dapat terus menerus diproduksi dalam jangka waktu yang sangat lama. Itulah sebabnya mengapa panas bumi disebut sebagai energi terbarukan.

Penggunaan panas bumi sebagai salah satu sumber tenaga listrik memiliki banyak keuntungan di sektor lingkungan maupun ekonomi bila dibandingkan sumber daya alam lainnya seperti batubara, minyak bumi, air dan sebagainya. Tidak seperti sumber daya alam lainnya. Sifat panas bumi sebagai energi terbarukan menjamin kehandalan operasional pembangkit karena fluida panas bumi sebagai sumber tenaga yang digunakan sebagai penggeraknya akan selalu tersedia dan tidak akan mengalami penurunan jumlah.

Pada sektor lingkungan, berdirinya pembangkit panas bumi tidak akan mempengaruhi persediaan air tanah di daerah tersebut karena sisa buangan air disuntikkan ke bumi dengan kedalaman yang jauh dari lapisan aliran air tanah. Limbah yang dihasilkan juga hanya berupa air sehingga tidak mengotori udara dan merusak atmosfer. Kebersihan lingkungan sekitar pembangkit pun tetap terjaga karena pengoperasiannya tidak memerlukan bahan bakar, tidak seperti pembangkit listrik tenaga lain yang memiliki gas buangan berbahaya akibat pembakaran.

Sedangkan di sektor ekonomi, pengembangan energi panas bumi dapat meningkatkan devisa negara. Penggunaannya dapat meminimalkan pemakaian bahan bakar yang berasal dari fosil (minyak bumi, gas dan batubara) di dalam negeri sehingga, mereka dapat diekspor dan menjadikan pemasukan bagi negara. Hal ini mengingat sifat energi panas bumi yang tidak dapat diangkut jauh dari sumbernya. Dengan mengembangkan panas bumi, kapasitas sebesar 330 MW yang dihasilkan energi panas bumi, negara dapat menghemat pemakaian minyak bumi sebesar 105 MM BBL.

Selain sebagai sumber listrik, energi panas bumi juga bisa dimanfaatkan dalam dunia agroindustri. Sejumlah lapangan panas bumi Indonesia berdekatan bahkan berada di daerah pertanian, peternakan, kehutanan dan perkebunan yang membutuhkan energi panas dalam proses produksi maupun pengolahan hasil. Energi panas memang paling dibutuhkan dalam proses pengeringan, pengawetan, sterilisasi, pasteurisasi, pemanasan dan sebagainya. Selama ini, petani menggunakan bahan bakar minyak (BBM) untuk memenuhi kebutuhan energi tersebut. Semakin besar industri yang mereka garap, semakin besar pula BBM yang diperlukan.

Konsep Dasar Drilling With Casing (DWC)

Drilling with casing adalah suatu metode atau sistem dengan menggunakan rangkaian casing sebagai rangkaian pipa pemboran. Dalam hal ini rangkaian pipa pemboran sebagai media untuk melewatkan energi mekanik atau hidrolik kepada pahat bor, digantikan oleh casing. Berbeda dengan konsep pemboran casing drilling yang telah diterangkan sebelumnya, Drilling With Casing menggunakan pahat bor khusus yang dinamakan Drillshoe, yang akan diletakkan pada sambungan casing pertama.

Dengan sistem ini, setelah lubang yang dibor dengan casing mencapai kedalaman casing setting depth, “penyemenan ditempat” dapat langsung dilaksanakan tanpa harus diangkat dulu dari lubang (tanpa memerlukan tripping) dan tidak membutuhkan alat lain dalam casing untuk penyemenan. Karena float valve sudah diletakkan pada rangkaian casing selama operasi pemboran. Setelah CSD (casing setting depth) dicapai dan lubang bor dibersihkan dengan mensirkulasikan lumpur di dalam lubang, lalu bottom plug diturunkan sampai duduk pada float collar kemudian pompakan bubur semen dan didorong dengan top plug, maka membrane pada bottom plug akan pecah dan semen akan masuk mengisi annulus sampai posisi top plug berhimpit dengan bottom plug, dan setelah pekerjaan penyemenan selesai Drillshoe dapat langsung dibor dengan pahat PDC konvensional untuk fase pemboran selanjutnya.

Sistem pemboran dengan casing ini tidak membutuhkan modifikasi untuk rig pemboran konvensional. Peralatan yang dibutuhkan untuk operasi ini adalah sistem top drive. Karena tidak ada yang dihilangkan dari casing, tidak ada persyaratan khusus untuk kabel bor atau peralatan penanganan pipa khusus untuk operasi ini. Sampai saat ini, tidak ada operasi DWC yang menggunakan rig penggerak kelly.

3.6 Tujuan Penggunaan Sistem DWC

Teknik pemboran dengan menggunakan casing tidak dapat dipungkiri lagi sebagai teknik yang mampu mengurangi biaya-biaya pembuatan sumur, atau mempermudah pembuatan sumur yang efektif dan praktis selama bisa diaplikasi dilapangan. Pemboran dengan casing memberikan keuntungan dalam penyelesaian pekerjaan dimana tripping time untuk mengangkat peralatan pemboran dan waktu untuk menurunkan casing ke kedalaman setting depth di eliminasi dan pekerjaan dapat langsung dilanjutkan pada tahap penyemenan tanpa masalah.

3.7 Keuntungan Penggunaan Sistem DWC

Keuntungan yang dapat diperoleh dengan penggunaan sistem DWC pada suatu operasi pemboran dapat dibagi menjadi beberapa bagian yaitu efisiensi rig, efisiensi fluida, efisiensi operasional, efisiensi unscheduled event.

3.7.1 Efisiensi Rig

Keuntungan yang dapat diperoleh dari efisiensi rig pada operasi DWC adalah :

• Tidak memerlukan rig khusus atau bisa menggunakan rig konvensional sehingga tidak ada biaya untuk menyewa rig yang khusus.

• Tidak diperlukkan sewa transportasi , perawatan dari drill pipe dan drill collar.

• Membutuhkan horse power dan perawatan yang lebih sedikit.

• Mengurangi pengulangan kerja pada drawwork (pada saat triping time).

3.7.2 Efisiensi Fluida

Keuntungan yang dapat diperoleh dari efisiensi fluida pada operasi DWC adalah :

• Laju alir dapat dikurangi.

• Meningkatkan pengangkatan cutting sehingga pembersihan lubang dapat lebih effisien.

3.7.3 Efisiensi Operasional

Dalam segi operasional, keuntungan yang bisa diperoleh dari penggunaan sistem DWC adalah :

• Diperlukan konsumsi bahan bakar yang lebih sedikit ( dengan digunakannya diameter rangkaian pemboran yang lebih besar pada sistem DWC, maka pressure loss pada rangkaian pemboran dapat diminimalkan sehingga tenaga pompa yang diperlukan tidak terlalu besar, dan dengan adanya hal tersebut maka penggunaan bahan bakar dapat lebih dihemat ).

• Menggurangi waktu tripping ( pada saat tripping dan penggantian BHA )

• Menggurangi masalah deviasi dan dogleg.

• Mengurangi kebutuhan horse power rig, karena kebutuhan rate pompa dan tekanan yang lebih kecil.

3.7.4 Efisiensi Unscheduled event

Dalam meminimalkan unscheduled event pada suatu operasi pemboran keuntungan yang bisa diperoleh dari penggunaan sistem DWC adalah :

• Dapat meminimalkan timbulnya masalah pada lubang sumur yang disebabkan oleh tekanan swab dan surge.

3.8 Keterbatasan Sistem DWC

Pada sistem DWC terdapat beberapa keterbatasan yang disebabkan penggunaan casing sebagai rangkaian pemboran. Keterbatasan-keterbatasan tersebut antara lain adalah :

• Torsi pemboran harus tidak boleh melebihi dari torsi casing.

• Teknologi saat ini dibatasi hanya untuk formasi yang lunak.

• Kedalaman dibatasi oleh kemampuan bit. Penggantian bit tidak memungkinkan karena harus mencabut seluruh rangkaian, sehingga menjadi tidak efisien.

3.9 Sistem DWC dan Alat –Alat Khusus yang Digunakan

Sistem DWC dengan menggunakan casing drill shoe yaitu bagian terbawah dari rangkaian casing sebagai pengganti drill bit. Drill shoe ini didesain dan berfungsi sebagai pahat pemborannya. Pemutaran casing di permukaan menggunakan top drive system. Ada dua cara untuk menghantarkan torsi dan putaran dari top drive ke rangkaian casing pemboran, yaitu dengan casing spears atau water bushing.

Rangkaian pemboran pada sistem ini terbagi menjadi dua rangkaian utama yang pertama rangkaian adalah BHA yang terdiri dari drill shoe, float collar, dan casing. Sedangkan yang kedua adalah peralatan pengangkatan yang harus bisa menahan berat, melakukan permutaran torsi dan mengandung tekanan. Perputaran DWC membutuhkan metode penyambungan dari top drive dengan casing, untuk menggerakan rangkaian casing.

Ada dua alternatif peralatan pengangkatan yang digunakan yaitu : water bushing (casing cross over) dan casing spears.

3.9.1 Drillshoe

Drillshoe adalah alat yang berfungsi sebagai pahat.yang diset di bawah rangkaian pemboran (lihat gambar 3.6). Bagian tengah dari nose alat ini terbentuk dari alumunium alloy, yang dapat dibor dengan segala macam bit / pahat.

Alat ini dibentuk dengan kombinasi dari elemen thermally stable diamond cutting (intan pemotong yang stabil dalam temperatur dan densitas tinggi), tungsten carbide (besi berat tempaan yang terbuat dari bahan sejenis karbid) di depan blade dan badan luarnya mempunya PDC cutter.

Drillshoe sangat agresif dan akan membor secara cepat dengan WOB rendah. Alat pemboran yang agresif dapat membuat torsi yang tinggi untuk berat yang rendah.

Gambar 3.2

Profile Drillshoe6

Tiga jenis model drillshoe yang digunakan dalam pemboran dengan casing yaitu:

1. Drillshoe 1

2. Drillshoe 2

3. Drillshoe 3

Adapun keterangan dari ketiga jenis drillshoe yang digunakan adalah sebagai berikut,

1. Drillshoe 1

Drillshoe 1 (gambar 3.7) mempunyai sistim kerja untuk lapisan atau formasi yang tidak begitu keras dan juga menghemat biaya ketika melakukan pemboran di bandingkan dengan pemboran konvensional, saving cost sewaktu akan mempersiapkan dan melakukan penyemenan (Cement in Place), tanpa adanya lagi Running Casing, drillshoe 1 merupakan produk berjenis inti aluminium yang berpusat di tengah dengan integral cutting blades.

Pisau (blades) terbuat dari bahan-bahan yang keras yang akan menghasilkan ketahanan terhadap adanya abrasi dikarenakan pengaruh pemboran, nozzel yang dapat di bor (Drillable) terdapat di antara blades langsung kepada fluida pemboran yang berfungsi atau berpengaruh kepada pendinginan dan cuttings removal.

Pusat dari drillable core terdapat di dalam badan baja (steel body) yang merupakan profile dari keseluruhan dari blades dan dilanjutkan kepada badan dari shoes yang melingkar hingga kepada diameter luar.

Badan besi yang terdapat di dalam badan (body) berhubungan dengan blades di luar dari diameter luar cutting dan strutkur cutting yang terbuat dari carbide yang akan akan dibor keluar kepada keseluruhan diameter.

Gambar 3.3

Drillshoe 112

Ketahanan terhadap abrasi dilindungi oleh kandungan metal matriks yang mengandung carbide Bricketts.

2. Drillshoe 2

Drillshoe 2 secara umum merupakan konstruksi yang hampir sama dengan Drillshoes 1, di mana (Gbr 3.8) terdapat pembaharuan terhadap cuttingnya yang terdapat di blades, yang mengandung berbagai jenis cutter jenis TSP yang terdapat di sekitar permukaan blades.

Ini akan menghasilkan kemampuan untuk membor formasi yang lebih keras dan interval yang lebih dalam atau kata lain berkemampuan dalam menembus zona yang lebih dalam dalam pemboran dengan casing blades-nya di modifikasi dengan PDC cutter kepada diameter gauge-nya di sekeliling bagian luar dari drillshoe.

Gambar 3.3

Drillshoe 212

2. Drillshoe 3

Drillshoe 3 merupakan produk yang telah dikembangkan dari dua jenis Drillshoe di atas (Gbr. 3.9) di mana telah dikombinasikan dengan keunggulan atau keuntungan dengan struktur cutting dari jenis PDC di mana merupakan standar dari mata bor PDC.

Dengan kemampuan untuk meletakkan atau menempatkan non drillable dari struktur cutting ke dalam lubang sumur, jadi hanya meninggalkan material dari pipa pemboran di daerah pahatnya tanpa merusak dari blades drillshoes.

Gambar 3.5

Drillshoe 312

3.9.2 Water Bushing

Water bushing (cross over) adalah sebuah alat sederhana yang berfungsi untuk menyambungkan top drive ke casing dan dapat di pasang pada torsi rendah. water bushing dibuat agar casing yang paling atas terhubungkan dengan top Drive sewaktu lubang dibuat dan sambungan menambah (lihat gambar 3.10).

Ini adalah suatu operasi yang sangat sederhana, penyambungannya dilakukan langsung dari water bushing ke casing, di mana jenis ulir dari bagian water bushing harus sama dengan ulir casing.

Gambar 3.6

Water Bushing11

3.9.3 Casing Spear

Casing spear sama fungsinya seperti water bushing yaitu alat sederhana untuk menyambungkan top drive ke casing. Seperti dapat dilihat pada gambar 3.11. Casing spear didesain untuk penyambungan cepat pada casing, casing spears dihubungkan dengan casing tidak dengan ulir, tapi melalui bagian dalam casing yang dimasukkan oleh spears yang juga dilengkapi dengan pack-off yang dapat menahan tekanan fluida (seal).

Gambar 3.7

Casing Spear11

menyebabkan ulir casing sama sekali tidak dipergunakan sehingga untuk penyambungan, hanya memerlukan satu koneksi, mengurangi waktu dan berarti akan mempercepat proses penyambungan dengan top drive system.

Stop ring diposisikan dekat dengan puncak spear untuk memastikan pegangan diletakkan pada tempat yang tepat di dalam casing. ¼ putaran ke kiri tanpa pengangkatan khusus akan melepaskan casing sedangkan ¼ putaran ke kanan memasang spear untuk memegang rangkaian casing.

Tidak ada komentar:

Posting Komentar